Noncanonical Wnt signaling pathways in C. elegans converge on POP-1/TCF and control cell polarity.

نویسندگان

  • Michael A Herman
  • Mingfu Wu
چکیده

In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway controls a cell migration whereas noncanonical Wnt pathways control the polarities of individual cells. Despite the differences in the identities and interactions among canonical and noncanonical Wnt pathway components, as well as the processes they regulate, almost all C. elegans Wnt pathways involve the sole Tcf homolog, POP-1. Intriguingly, POP-1 is asymmetrically distributed between the daughters of an asymmetric cell division, with the anterior sister cell usually having a higher level of nuclear POP-1 than its posterior sister. At some divisions, asymmetric distribution of POP-1 is controlled by noncanonical Wnt signaling, but at others the asymmetry is generated independently. Recent experiments suggest that despite this elaborate anterior-posterior POP-1 asymmetry, the quantity of POP-1 protein may have less to do with the subsequent determination of fate than does the quality of the POP-1 protein in the cell. In this review, we will embark on a quest to understand Quality (1), at least from the standpoint of the effect POP/Tcf quality has on the control of cell polarity in C. elegans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of cell polarity by noncanonical Wnt signaling in C. elegans.

The three Caenorhabditis elegans beta-catenin each function in distinct processes: BAR-1 in canonical Wnt signaling that controls cell fates and cell migrations, HMP-2 in cell adhesion and WRM-1 in Wnt signaling pathways that function in conjunction with a mitogen-activated kinase (MAPK) pathway to control the orientations, or cell polarities, of cells that undergo asymmetric cell divisions. In...

متن کامل

A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans.

The polarities of several cells that divide asymmetrically during Caenorhabditis elegans development are controlled by Wnt signaling. LIN-44/Wnt and LIN-17/Fz control the polarities of cells in the tail of developing C. elegans larvae, including the male-specific blast cell, B, that divides asymmetrically to generate a larger anterior daughter and a smaller posterior daughter. We determined tha...

متن کامل

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

A β-Catenin Identified by Functional Rather Than Sequence Criteria and Its Role in Wnt/MAPK Signaling

Wnt/MAPK signaling is a common variant of Wnt signaling in C. elegans and has been implicated in vertebrates. The sys-1 gene works with Wnt/MAPK signaling to control cell fates during C. elegans development. We report that the SYS-1 amino acid sequence is novel but that SYS-1 functions as beta-catenin: SYS-1 rescues a bar-1/beta-catenin null mutant, binds the POP-1/TCF beta-catenin binding doma...

متن کامل

Wnt signaling.

The use of Wnt ligands for signaling between cells is a conserved feature of metazoan development. Activation of Wnt signal transduction pathways upon ligand binding can regulate diverse processes including cell proliferation, migration, polarity, differentiation and axon outgrowth. A 'canonical' Wnt signaling pathway has been elucidated in vertebrate and invertebrate model systems. In the cano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2004